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Abstract— Enhancing propulsion system efficacy presents 

a significant challenge in dynamic settings, where the 

pursuit of high thrust frequently contradicts the objective 

of reducing fuel consumption. This study presents an 

innovative reinforcement learning (RL) framework 

utilizing the Deep Deterministic Policy Gradient (DDPG) 

algorithm to effectively manage this trade-off. Through the 

creation of a bespoke simulation environment, the 

propulsion system is represented with state and action 

spaces that precisely reflect thrust and fuel dynamics, 

allowing the reinforcement learning agent to acquire 

effective, continuous control policies suited to the 

intricacies of the problem. Significant contributions are 

offered by this research in the form of a customized 

propulsion system environment, a thorough evaluation 

under nominal conditions, and the implementation of a 

DDPG framework for continuous control. The DDPG-

based approach achieves a better balance between thrust 

optimization and fuel efficiency than traditional methods, 

as shown in a comparison study. Aerospace, marine, and 

industrial propulsion systems stand to benefit greatly from 

these results, which highlight the promise of reinforcement 

learning in solving complex engineering problems. 
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I. INTRODUCTION 

The maritime industry is currently undergoing a substantial 

transformation as a result of the integration of artificial 

intelligence (AI) algorithms that are intended to enhance the 

efficiency of propulsion systems. This development tackles 

essential issues, including the reduction of emissions and the 

optimization of fuel consumption, among other factors. This 

literature review employs a funnel approach to systematically 

explore the transition from broad applications of artificial 

intelligence in maritime contexts to implementations in 

propulsion systems, ultimately leading to the identification of 

research gaps pertinent to the current study. 

 

A. Broad Applications of AI in Maritime Transportation 

AI technologies have been progressively integrated into 

maritime transportation to enhance safety, operational 

efficiency, and environmental sustainability. Durlik et al. 

(2024) conducted an extensive review of artificial intelligence 

applications in maritime safety and risk management, 

emphasizing AI's contributions to risk analysis, crew resource 

management, hazardous material handling, predictive 

maintenance, and navigation systems. Their research 

highlighted AI's capacity to revolutionize maritime safety 

through real-time decision support and hazard detection, thus 

improving operational resilience [1].  

Zhuo et al. (2023) investigated the transformative capacity of 

AI in contemporary maritime operations, emphasizing 

digitalization and automation in port activities. They examined 

how AI transforms labor dynamics and industry skill 

prerequisites, highlighting the necessity for a comprehensive 

analysis of AI's influence on maritime operations. Their 

research emphasized the necessity of comprehending AI's 

wider ramifications for its effective incorporation into 

maritime practices [2].  

 

B. AI Algorithms in Maritime Operations Monitoring 

Qi and Zheng (2016) developed an intelligent model for 

predicting vessel trajectory through the use of data mining and 

machine learning techniques, with a particular emphasis on 

specific AI applications. The methodology employed 

consisted of clustering historical trajectories and training 

classifiers to forecast new vessel paths, thereby enhancing 

proactive maritime traffic management [3].  

De et al. (2017) created a mixed-integer nonlinear 

programming model that tackles scheduling, routing, 

loading/unloading, and vessel capacity constraints. The model 

integrated time window constraints, thereby improving the 

accuracy of maritime operations planning [3].  
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C. AI in Maritime Propulsion Systems 

The necessity to optimize marine propulsion systems with AI 

has increased interest because of the need to reduce emissions 

and energy consumption. Zhang (2023) conducted an analysis 

of contemporary propulsion systems and the application of 

liquefied natural gas (LNG) in maritime vessels. This study 

looked at the use of artificial neural networks and other AI 

methods to measure the performance of LNG machines in 

airplanes, which could lead to similar uses in marine 

propulsion [4].  

Li et al. (2023) examined the use of AI in shipping, 

emphasizing machine learning and deep learning 

methodologies. The review underscored the significance of AI 

in automatic control of ships, collaboration between ships, 

ports, and vehicles, as well as trajectory optimization, 

stressing its crucial role in improving the efficiency of 

maritime transportation [5].  

 

D. Critical Analysis and Gap Identification 

The analysed studies collectively illustrate the considerable 

influence of AI on multiple facets of maritime operations, 

encompassing safety, traffic management, and the 

optimization of propulsion systems. Nonetheless, there are still 

several gaps that remain: 

• Integration Challenges: Although there is substantial 

documentation on AI applications within maritime 

sectors, the thorough integration across all operational 

aspects is still inadequately examined. To achieve 

comprehensive improvements in maritime operations, it is 

essential to address this gap. 

• Ensuring the integrity and uniformity of data: Successful 

AI implementation hinges on the availability of high-

quality, standardized data. The lack of consistency in data 

collection and management practices obstructs the 

advancement of strong AI models, highlighting the need 

for standardized protocols. 

 

Rapid artificial intelligence (AI) adoption in marine settings 

raises ethical and regulatory questions, especially about 

transparency in decision-making, job loss, and safety. It is 

crucial to set forth explicit guidelines and ethical frameworks 

to tackle these challenges effectively. 

The use of AI algorithms to enhance maritime propulsion 

systems is an essential field of study, particularly as the 

industry aims to minimize fuel consumption and emissions. 

Although investigations have examined the impact of AI on 

propulsion efficiency, further in-depth analysis is required to 

incorporate real-time data analytics, machine learning, and 

control systems for the creation of adaptive propulsion 

optimization models. 

This literature review highlights the significant impact of AI 

on maritime operations and pinpoints specific areas that 

require additional investigation, especially regarding the 

optimization of propulsion systems. Filling these gaps will 

improve the efficacy of AI applications, leading to more 

efficient and sustainable maritime transportation. 

 

II. METHODOLOGY 

A. Problem Formulation 

Optimizing propulsion systems to reach high thrust efficiency 

while reducing fuel consumption and emissions presents 

difficult problems for the maritime sector as shown in figure 1. 

In stationary or predictable environments, traditional 

approaches including Proportional-Integral-Derivative (PID) 

controllers and rule-based algorithms have shown success; 

but, in dynamic, complex, and data-intensive maritime 

operations they struggle. Particularly as environmental rules 

tighten and fuel prices rise, it is clearly necessary for scalable, 

flexible, real-time optimization techniques.  

 
Figure 1: Block diagram of the maritime propulsion system 

 

This work addresses the trade-off between thrust generation 

and fuel economy by concentrating on building an artificial 

intelligence-based framework to maximize marine propulsion 

systems. The propulsion system is imagined as comprising a 

continuous action space defining control actions for thrust 

adjustments and state variables representing operational 

parameters including current thrust, fuel levels, and 

environmental conditions. Expressed as a reward function 

juggling thrust efficiency and fuel consumption, the objective 

function is:  

 
where  signifies the thrust generated,  indicates the 

fuel consumption, and  are weighting coefficients that 

regulate the trade-off.  

The objective is to identify an optimal control policy 

 that maximizes the cumulative reward over time 

while accommodating diverse operational states and 

constraints, including fuel limitations and environmental 

disturbances. Principal challenges in this issue encompass the 

nonlinear dynamics of the propulsion system, the necessity for 
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real-time adaptability to fluctuating conditions, and the 

model's scalability to accommodate various vessel types and 

operational scenarios. 

 

B. Proposed Model 

A Deep Reinforcement Learning (DRL)-based framework 

using the Deep Deterministic Policy Gradient (DDPG) 

algorithm is proposed to solve these difficulties. This 

framework provides real-time adaptation and scalability to fit 

different operational environments, so optimizing continuous 

control actions for marine propulsion systems.[24] 

The model is set up around two main elements. The basis of 

the optimization framework is first the actor-critic 

architecture. While the critic network assesses the efficacy of 

these actions by approximating their related Q-values, so 

representing expected cumulative rewards; the actor network 

maps the current state to an optimal action, so guiding thrust 

adjustments. By means of this dual-network approach, the 

model can efficiently balance exploration and exploitation 

during training. 

Second, a custom-designed simulation environment integrates 

operational constraints including maximum thrust and fuel 

levels, environmental disturbances like wind and currents, and 

fuel consumption linked to thrust adjustments, so mimicking 

the dynamics of the propulsion system. This surroundings 

gives the agent reasonable comments, so helping to learn 

strong policies. 

The training process starts with the actor and critic networks' 

random weight assignment. Also, initialization is target 

networks, which stabilize training by offering consistent Q-

value estimates. Establishing a replay buffer to hold 

transitions, state, action, reward, and next state, allows batch 

sampling for decorrelated training updates.[24] The actor 

network generates an action depending on the current state at 

each step, which is carried out in the surroundings to track the 

next state and related reward. The replay buffer stores this 

change for next use in learning. 

Learning consists in sampling batches of replay buffer 

transitions. Minimizing the loss between predicted and target 

Q-values helps the critic network to be updated since target 

values include the discounted future reward. Maximizing the 

expected Q-value of the chosen actions helps the actor 

network to be updated by supporting policies with more 

benefits. Target networks guarantee slow adaptation and 

stability by means of a soft update mechanism. 

 

 
Figure 2: Flowchart of the DDPG-based optimization process

 

Extensive simulations under several operational conditions, 

including different environmental disturbances, system 

constraints such fuel limits, and many vessel configurations, 

are part of model validation. The ability of the model to 

sustain ideal thrust, lower fuel consumption relative to 

conventional approaches, and show resilience across scenarios 

helps to determine its effectiveness. 
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The model makes reasonable assumptions about correct 

starting calibration of propulsion system parameters and 

enough computational capability for real-time application. 

Among the constraints are real-time operational needs 

including adherence to safety and regulatory standards as well 

as limited data availability for some vessel kinds. Using DRL's 

strengths, the suggested architecture presents a flexible and 

effective way to maximize marine propulsion systems, so 

addressing important issues and laying a basis for next 

developments. 

 

III. RESULTS AND DISCUSSION 

The proposed Deep Deterministic Policy Gradient (DDPG) 

framework was assessed under diverse simulation conditions, 

emphasizing its capacity to enhance thrust generation while 

reducing fuel consumption. The model's efficacy was 

evaluated in comparison to conventional control methods, 

including Proportional-Integral-Derivative (PID) controllers. 

The DDPG-based model exhibited a notable enhancement in 

propulsion system efficacy. The cumulative reward across 500 

episodes, illustrated in Figure 3, demonstrated consistent 

growth, with the model reaching convergence after roughly 

150 episodes. Figure 4 further illustrates the comparison 

between episode rewards and average rewards throughout the 

training period, emphasizing the model's capacity to stabilize 

and surpass traditional controllers in the later stages of 

training. 

 
Figure 3: Cumulative reward over training episodes for the DDPG-based model 

 

 
Figure 4: Episode rewards and average rewards during training 
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The efficiency of fuel consumption, which is the thrust 

produced per unit of fuel, increased by 18% when compared to 

the old ways. Furthermore, the model kept constant thrust 

outputs under different environmental conditions; in high-

disturbance situations, the variation of less than 5% from the 

target thrust is shown in Figure 5. 

Computational efficiency dominated the evaluation of the 

proposed model's running performance. With an average 

action selection time of 12 ms, fit for real-world use, the 

DDPG-based method shown near-real-time decision-making 

capacity. 

Figure 6 shows the stability and learning effectiveness of the 

model by showing the change of the first Q0 values over 

episodes. Figure 7 shows the state evolution of thrust and fuel. 

 

 
Figure 5: Steps per episode indicating the convergence of the model's policy remaining during simulation, so illustrating the 

equilibrium reached between thrust generation and fuel consumption 

 

Qualitative studies showed that the model responded rather 

well to changes in environmental conditions including wind 

and current disturbances. Under low-thrust conditions, the 

acquired policies gave fuel economy top priority; as 

operational needs grew, they turned toward higher thrust 

generation. Figure 8 shows the agent's actions during 

simulation, so verifying the adaptability of the model to 

different conditions. This flexibility emphasizes the stability 

of the reinforcement learning structure. 

The results show that in optimizing marine propulsion 

systems, the proposed DDPG-based framework beats 

conventional PID controllers. The aim of the research is to 

balance thrust generation and fuel consumption, thus the  

 

 
Figure 6: Initial Q0 value progression during training episodes 
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Figure 7: State evolution of thrust and fuel remaining during simulation 

 

 
Figure 8: Actions (thrust adjustments) taken during the simulation notable increase in fuel efficiency and thrust stability fits 

perfectly. These results support the possibilities of reinforcement learning to solve challenging optimization issues in maritime 

activities. 

 

Wu et al. (2021) have demonstrated the efficacy of 

reinforcement learning in hybrid-electric propulsion systems, 

and the observed improvements in propulsion efficiency are 

consistent with their findings. But unlike Wu et al., the present 

work emphasizes only continuous control issues using DDPG, 

so stressing its relevance for real-time uses. Furthermore, 

building on the work of Zhang et al. (2018), which underlined 

the need of adaptive control strategies in dynamic 

environments, are the outcomes The adaptability of the model 

under high-disturbance situations confirms even more the 

resilience of actor-critic designs in maritime environments. 

The maritime sector depends much on the shown increases in 

thrust stability and fuel economy. Reducing fuel consumption 

will enable operators to comply with tighter environmental 

rules and cut running costs. Furthermore, the flexibility of the 

structure guarantees dependable performance in different 

surroundings, so strengthening operational resilience. 

It is critical to acknowledge the model's many limitations, 

notwithstanding its remarkable performance in simulation 

environments. To begin with, not all vessels will be able to 

achieve the exact initial calibration of their propulsion system 

parameters that is required by the model. Secondly, the 

computational demands of model training may be too much 

for smaller operators with limited resources to handle. Lastly, 

the model's performance in practical scenarios is cast into 

doubt due to the absence of real-world testing. 

Future research should focus on strengthening the models by 

incorporating real-time operational data into the training 

process. Investigating hybrid solutions that integrate 

reinforcement learning with model-based optimization 

techniques could further improve performance. Extending the 
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framework to handle multi-objective optimization problems, 

like finding a happy medium between fuel efficiency and 

reducing emissions, finally paves the way for exciting new 

research. 

 

IV.CONCLUSION 

This work addresses the long-standing trade-off between 

thrust generation and fuel economy by introducing a new 

application of the Deep Deterministic Policy Gradient 

(DDPG) algorithm to maximize marine propulsion systems. 

The proposed framework shows notable increases in 

propulsion efficiency, dynamic environmental condition 

adaptability, and fuel economy by using reinforcement 

learning. These results highlight how transformatively 

reinforcement learning can be used to solve challenging 

optimization issues in maritime operations. 

The study adds especially to the field by combining cutting-

edge reinforcement learning methods with a specially built 

simulation environment fit for marine propulsion systems. 

This method not only shows the efficiency of actor-critic 

designs for continuous control issues but also offers a scalable 

solution fit for several maritime environments. The findings 

provide operators trying to improve efficiency with useful 

insights while following more stringent environmental rules. 

Although the study has its merits, it does admit to having 

some limitations. Accurate initial calibration and lack of real-

world testing indicate improvement areas. However, these 

constraints enable future research. Integrating real-time 

operational data, adding multi-objective optimization, and 

validating the model in maritime scenarios are promising 

further research. 

This research lays the groundwork for using AI to solve 

maritime operations problems. The success of reinforcement 

learning in optimizing propulsion systems signals a paradigm 

shift in energy management, environmental compliance, and 

autonomous maritime technologies. This study advances 

sustainable and intelligent maritime transportation by bridging 

simulation and application. 
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